A hybrid kinetic/fluid model for solving the gas dynamics Boltzmann–BGK equation
نویسندگان
چکیده
منابع مشابه
A hybrid kinetic-fluid model for solving the gas dynamics Boltzmann-BGK equation
Our purpose is to derive a hybrid model for particle systems which combines a kinetic description of the fast particles with a fluid description of the thermal ones. In the present work, fast particles will be described through a collisional kinetic equation of BoltzmannBGK type while thermal particles will be modeled by means of a system of Euler type equations. Then, we construct a numerical ...
متن کاملVARIATIONAL HOMOTOPY PERTURBATION METHOD FOR SOLVING THE NONLINEAR GAS DYNAMICS EQUATION
A. Noor et al. [7] analyze a technique by combining the variational iteration method and the homotopy perturbation method which is called the variational homotopy perturbation method (VHPM) for solving higher dimensional initial boundary value problems. In this paper, we consider the VHPM to obtain exact solution to Gas Dynamics equation.
متن کاملA hybrid kinetic-fluid model for solving the gas
Our purpose is to derive a hybrid model for particle systems which combines a kinetic description of the fast particles with a fluid description of the thermal ones. In the present work, fast particles will be described through a collisional kinetic equation of BoltzmannBGK type while thermal particles will be modeled by means of a system of Euler type equations. Then, we construct a numerical ...
متن کاملApplication of Homotopy-Perturbation Method for Solving Gas Dynamics Equation
Nonlinear partial differential equations are useful in describing the various phenomena in disciplines. The Homotopy perturbation method, first proposed by He in 1998, was developed and improved by He [5, 6, 7, 8]. Homotopy perturbation method [4] is a novel and effective method, and can solve various nonlinear equations. This method has been successfully applied to solve many types of nonlinea...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2004
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2004.03.007